
EBC Solid Waste Management Webinar

Big Battles in The World of Recycling

Welcome

Ann Gisinger

Executive Director & President Environmental Business Council

Thank you to our Sponsors

Program Partners

MassRecycle
SWANA Southern New England
SWANA Northern New England
National Waste & Recycling Association
Northeast Resource Recovery Association

Introduction

Stephen Sakakeeny

Program Co-Chair & Moderator

Principal SAK Environmental, LLC

A Piece of the Big Picture

- MA Waste Ban Data CY2019
- Waste-to-Energy Facilities 54% (2.99M tons) of total MSW disposed annually
- Average rate of "failed loads" = 2.4% (5,650 loads)
- Paper/cardboard = 84%
- ◆ Commercial organics = 13.5%
- Not The Whole Story

Source: MassDEP Quarterly Comparative Analysis Reports (QCAR) CY2019

Waste Characterization & The Full Potential of Recycling

John Culbertson

Vice President

MSW Consultants, LLC

2

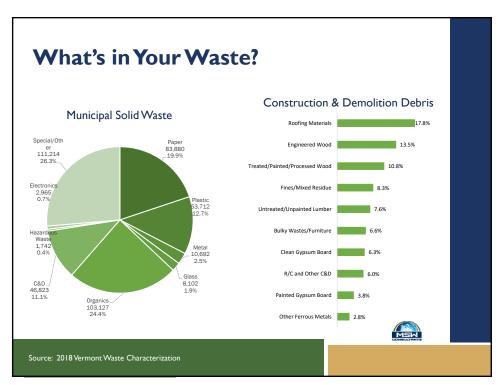
Topic I

Disposed Waste Composition Measurement

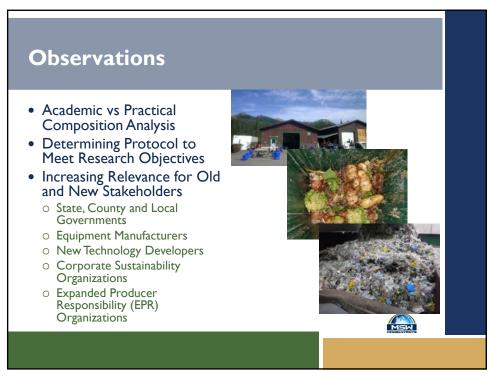
3

Why Measure Waste Composition?

- Evaluate the effectiveness of current diversion programs
- Identify constituents to be targeted in future diversion programs
- Assess waste as a feedstock
 - Energy content
 - Moisture level
 - Particle size
 - Infeed variability (seasonal, load-by-load)


4

New England Waste Composition Studies


- 2019 Massachusetts Combustor Class II Recycling Program Waste Characterization Studies (MassDEP)
- 2018 **Vermont** Waste Characterization (DEC)
- 2015 Connecticut Statewide Waste Characterization Study (DEEP)
- 2015 **Rhode Island** Solid Waste Characterization Study (RIRRC)
- 2011 Maine Residential Waste Characterization Study (University of Maine)

MSM

5

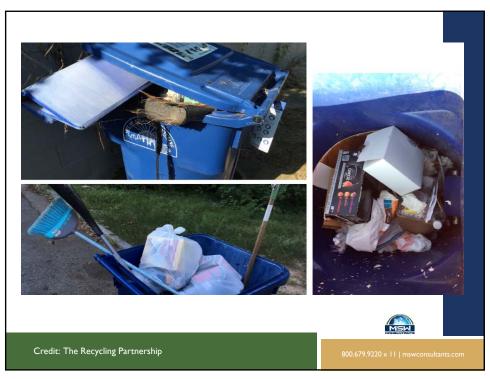
6

Topic 2 The Value of Optimized Recycling

8

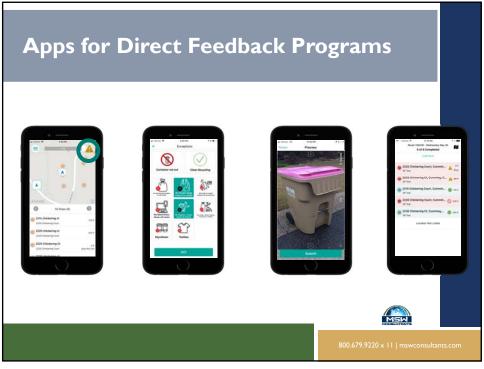
A New Mindset for Sustainable Curbside Recycling Programs

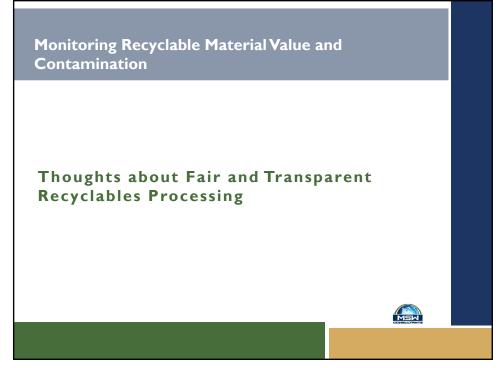
- Curbside recycling collection programs **ARE NOT** a function of "waste" management
- They <u>ARE</u> providers of a specialized feedstock for U.S. manufacturers of products and packaging in a circular economy



300.679.9220 x 11 | mswconsultants.com

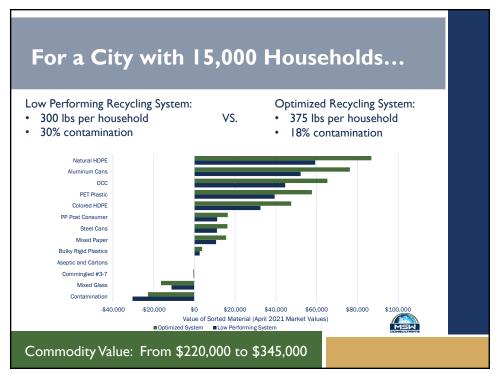
9



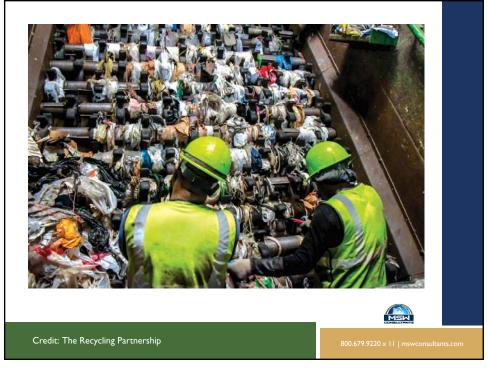

10

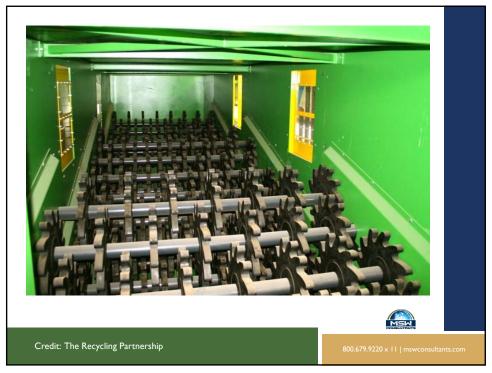
12

14


 However...MRFs are NOT set up to accurately measure the composition and contamination of inbound materials

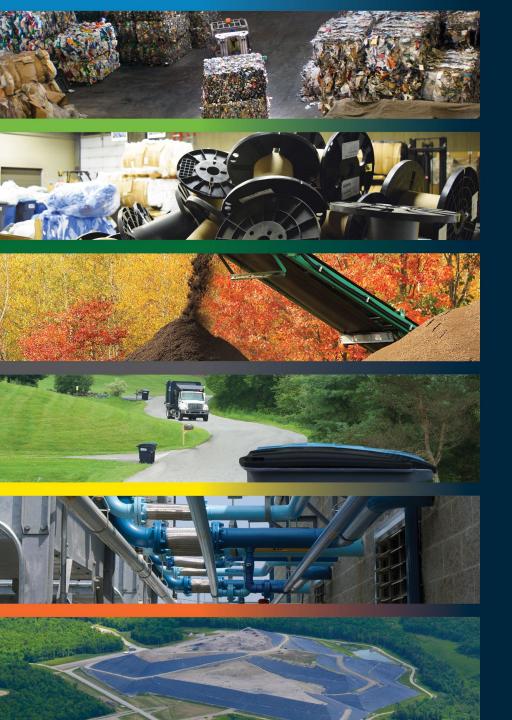
O Yet this is how most processing contracts are written


16




18

20



Beyond National Sword Recycling Update

Erin Banfield

Senior Business Manager Casella

Beyond National Sword Recycling Update

EBC Solid Waste Management
Webinar
Big Battles in The World of
Recycling

Erin Banfield September 23, 2021

Casella Company Overview:

Founded in 1975 with a single truck

 Approximately 2,800 employees serving over 200,000 customers and 500,000 households across the Northeast

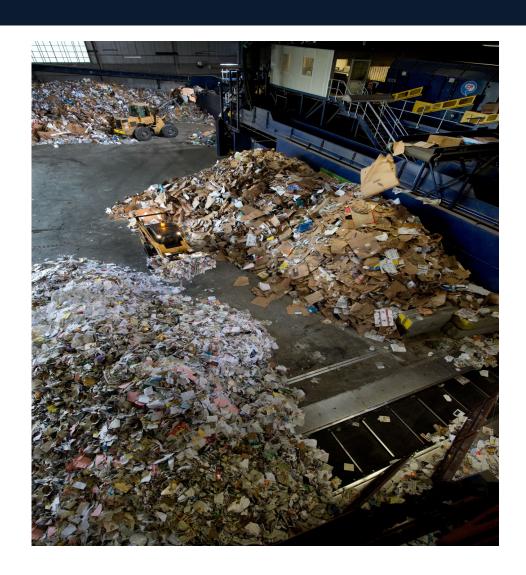
Traded on NASDAQ as CWST

\$750M in annual revenue

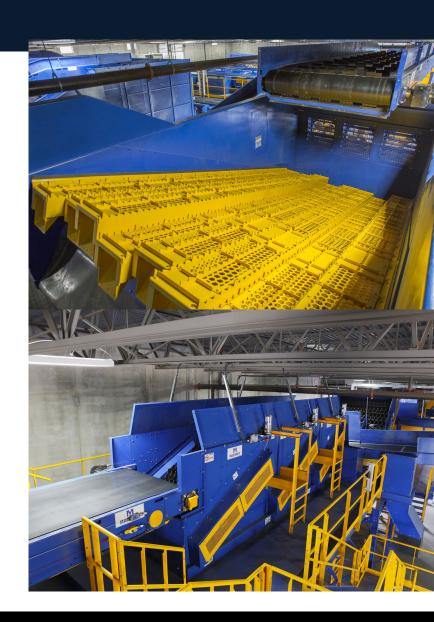
Operations in CT, MA, ME, NH, NY, PA, and VT

 Vertically integrated collection, transfer, disposal and recycling operations

 Recover over 800,000 tons of recycling and over 450,000 tons of organics for beneficial use each year = More than 1.2 million tons of recyclables and organics per year



- **▶** 17 Recycling Operations
- Single Stream, Commercial, Source Separated processing
- Process and markets over 800,000 tons/yr
- **▶** Boston, MA MRF 3rd largest in the U.S.


National Sword - Almost 3-years later...

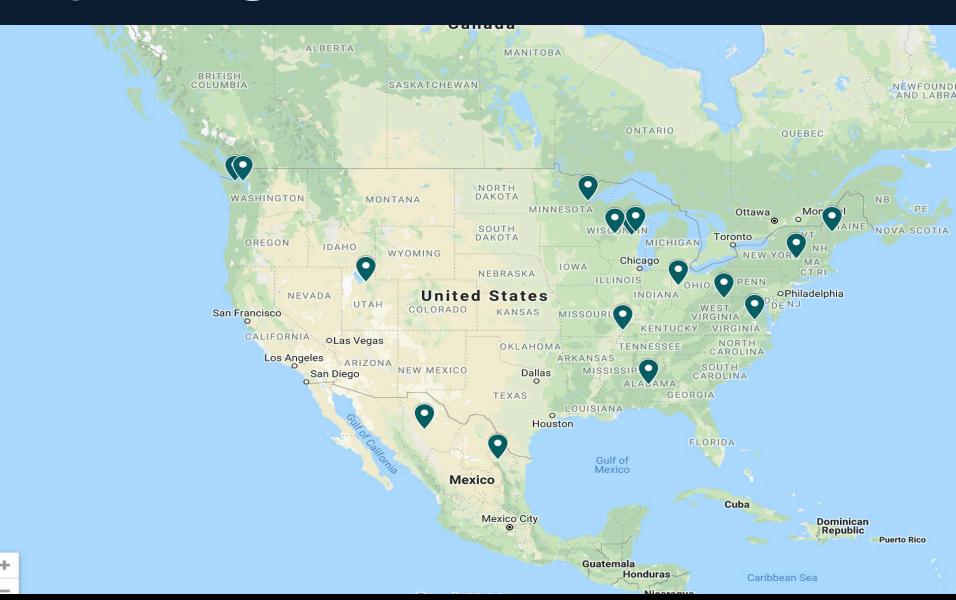
- ➤ New Industry acceptable outbound quality spec of 0.5% of "carried waste"
- Previous Industry standard 2%
- Major MRF Impacts
- MRF Inbound Contamination Rate averages about 20%

Adding Technology

- Focus has turned to Quality
- Casella invested 9M in Recycling (2019)
- Polishing/Ballistic Screens
 - > Extract further contaminates
- > OCC Screening Retrofits
- Optical sorting for further upgrades

COVID Impacts

- Commercial tons (supply) decreased
 - > Created increase in demand
- Residential tons increased- up to 30%
- Pricing Impacts
 - Mixed Paper
 - > occ
 - > PET
 - > HDPE
 - > Glass


Importance of Continued Recycling

- Demand still increasingadditional capacity
 - Essential Household products shortage
 - All produced from Recovered paper and plastics.
- Residential materials such as Mix Paper, Cardboard, Plastics
- Products are vital to get to our front-line workers

Upcoming Domestic Mill Growth

To learn more, please visit:

casella.com

RECYCLING | COLLECTION | ORGANICS | ENERGY | LANDFILLS

Beyond the Blue Bin: Integrating Anti-Racism & Intersectional Environmentalism into Waste Reduction Messaging

Lani St. Hill

Outreach Coordinator for Waste Reduction and Recyling

North Carolina State University

BEYOND THE BLUE BIN

INTEGRATING
ANTI-RACISM & INTERSECTIONAL
ENVIRONMENTALISM
INTO
WASTE REDUCTION MESSAGING

NC STATE

- 36,000+ students
- 9,000+ faculty/staff
- 700+ buildings
- 2,100+ acres
- Wolfpack / ACC

Waste Reduction & Recycling

- campus waste hauler
- closed-loop on food waste
- 54% waste diversion
- robust zero waste & sustainability programs

recycling.ncsu.edu

"We must acknowledge the history of the spaces and places we occupy to both understand and unlearn the many ways that we have been socialized."

NC STATE UNIVERSITY LAND ACKNOWLEDGMENT, AUTHORED BY LYNN-LOCKLEAR FISHER (LUMBEE)

LISTEN. LEARN. REPEAT.

COMMUNICATE

SOCIAL MEDIA
SHARE / FOLLOW / COMMENT/ LIKE

BE INVOLVED

ATTEND EVENTS
SUPPORT COMMUNITIES
SUPPORT THE WORK

recycling.ncsu.edu

Personal Waste Audits

LANDFILL 43.8%

RECYCLING 31.7%

COMPOST 24.4%

ACCESS

PRIVILEGE

WORLDVIEWS

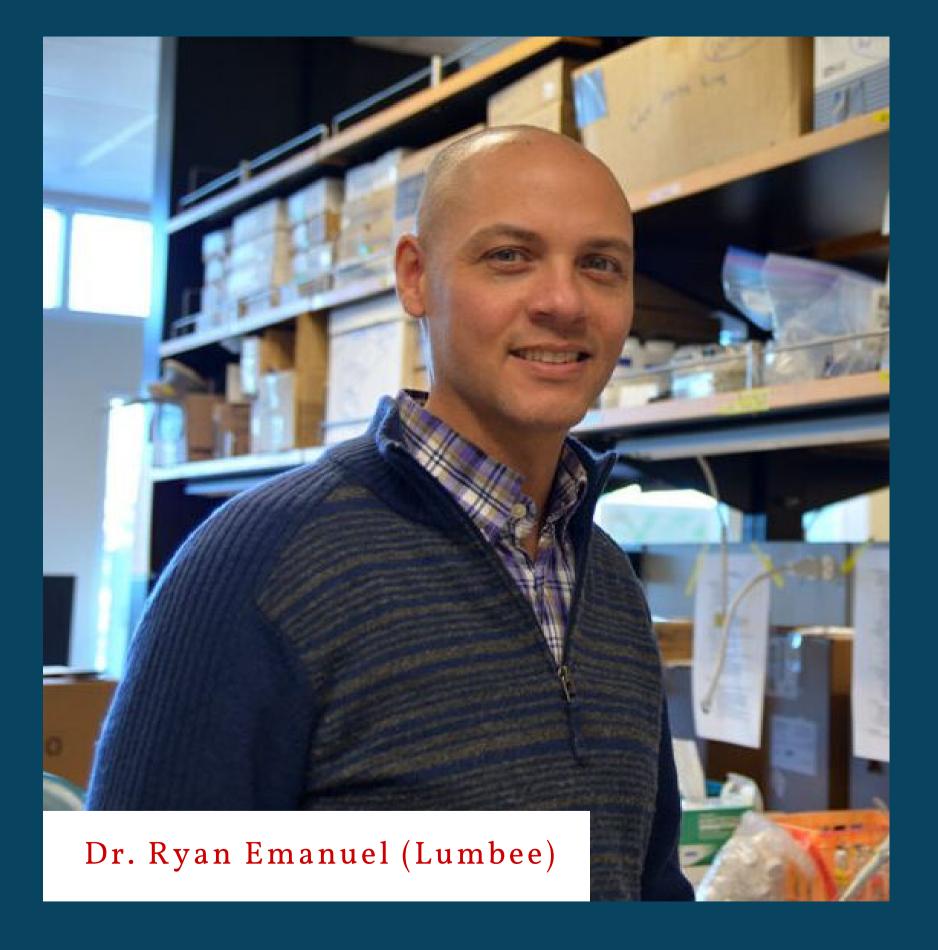
CONSUMPTION HABITS

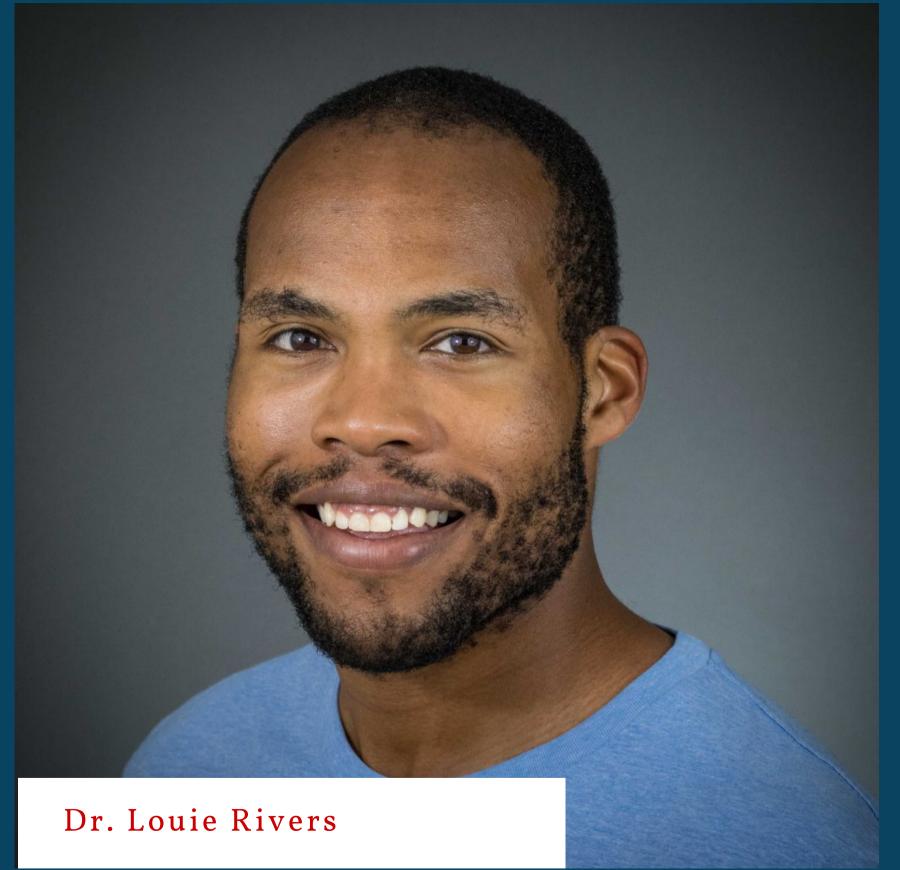
POLICIES & SYSTEMS

REFUSE SINGLE-USE PLASTICS

EXTRACTION & MANUFACTURING

EMINENT DOMAIN
HEALTH HAZARDS
FAIR LABOR


RECYCLING & ACCOUNTABILITY


LACK OF ACCESS
INABILITY TO PROCESS
PRODUCER RESPONSIBILITY

DISPOSAL & DISPARITY

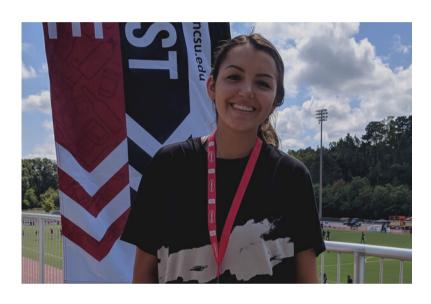
BURDEN
HEALTH HAZARDS
REDLINING

DATA-DRIVEN

PERSONAL EXPERIENCES

EXPERTS & RESEARCH

LOCAL KNOWLEDGE



BUILDING ENGAGEMENT

Social Media

@NCStateRecycles

Student Interns & Organizations

Volunteer Programs

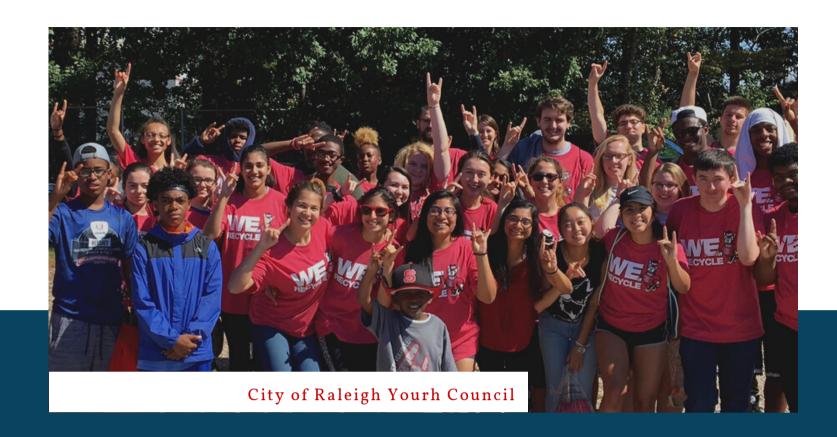
SOCIAL MEDIA

- -Share & Promote
- -Meet Your Students Where They Live
- -Informal Connections
- i.e. Waste Education Wednesdays
- -Evergreen

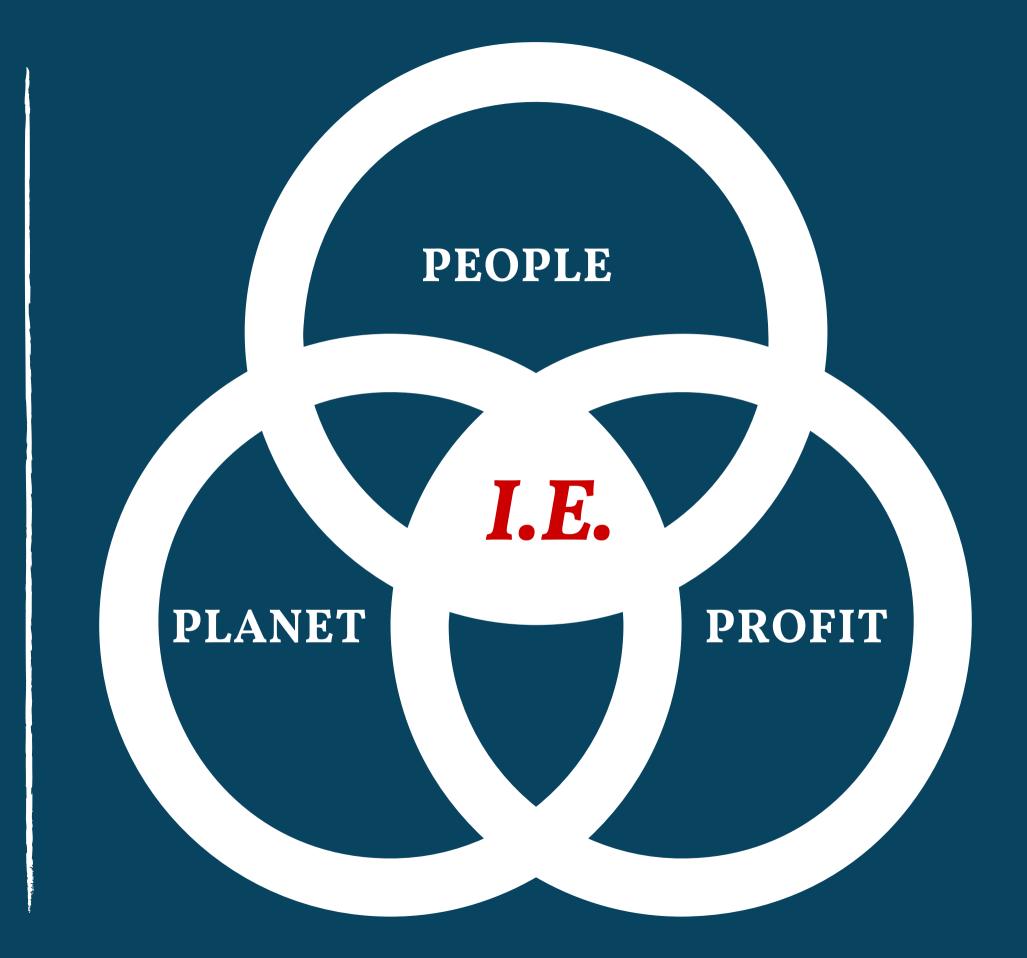
@NCStateRecycles

INTERNSHIPS

- -Post Your Positions
- -Professional Experience
- -Model What You Want to See


STUDENT/ COMMUNITY ORGANIZATIONS

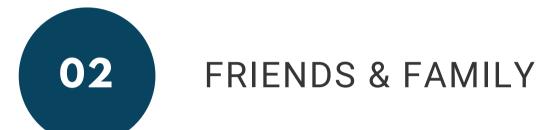
- -Mentor / Advisor
- -Community Resource
- -Collaborate with Community
 Organizations
- -Use Your Position to Support Others
- -Talk to Everyone!



INTERSECTIONAL ENVIRONMENTALISM*

recognizing how colonization, white supremacy, and racism have created institutions and practices of today that target the environment & vulnerable communities

building knowledge within that space to educate & inspire others to create change



4 LEVELS OF ACTION

WILL GRANT (DRAWDOWN)

Build Knowledge Acknowledge Advocacy Engagement Connect with what Dig deeper into Support Showcase/Support matters what you are your community community already doing to dreams and Be authentic showcase the solutions connection

THANK YOU

Lani St. Hill (she/her)
Outreach Coordinator
NC State Waste Reduction & Recycling

mesthill@ncsu.edu

@ NCStateRecycles

Instagram, Facebook, TikTok, Twitter, YouTube, Pinterest

Plastics Recycling: What Happens After Collection

George Aronson

Principal

CommonWealth Resource Management Corporation

Environmental Business Council of New England, Inc.

Plastics recycling: what happens after collection

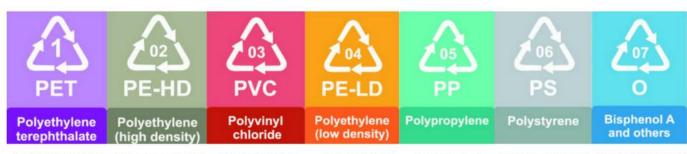
EBCNE Webinar on Solid Waste Management: Big Battles in the World of Recycling

23 September 2021

ARCTIC CIRCLE by Alex Hallatt

Appeared in the Boston Globe on 8 August 2021. Used by permission of the cartoonist.

Thank you Alex!


CommonWealth

Resource Management Corporation

There's a lot more to recycling than collection!

- 1. What are plastics?
- 2. What is plastics recycling? When we collect plastics, what can we do with them?
- 3. What are pyrolysis and gasification? Are they recycling?

Plastics #1 - #7: the popular view

PET is commonly used in commercially sold water bottles, soft drink bottles, sports drink bottles, and condiment bottles. HDPE is commonly used in milk and juice bottles, detergent bottles, shampoo bottles, grocery bags, and cereal box liners. PVC can be flexible or rigid, and is used for plumbing pipes, clear food packaging, shrink wrap, plastic children's toys, tablecloths, vinyl flooring, children's play mats, and blister packs (such as for medicines).

LDPE is used for dry cleaning bags, bread bags, newspaper bags, produce bags, and garbage bags, as well as "paper" milk cartons and hot/cold beverage cups.

PP is used to make yogurt containers, deli food containers, furniture, luggage and winter clothing insulation. PS, also popularly known as Styrofoam, is used for cups, plates, take-out containers, supermarket meat trays, and packing peanuts. Any plastic item not made from the above six plastics is lumped together as a #7 plastic. things like CD's baby bottles and headlight lens

Plastics: an elemental view. How many molecules are there in a bowling ball? In a tire?

Plastics: an organic chemist's view

Atoms Carbon (C) Oxygen (O) Hydrogen (H) Chlorine (CI)

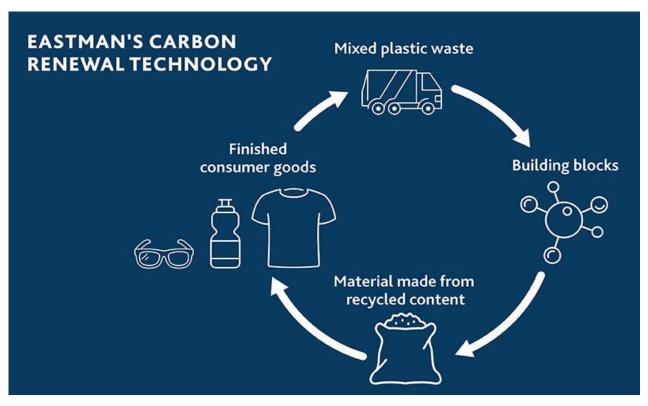
(H H) (II) Monomer (C=C) (II) (H H)

Example shown is ethylene monomer – C2H4

Plastics: an organic chemist's view

Example shown is **poly**ethylene polymer – (C₂H₄)n

Plastics #1-#7: an engineer's view


Туре	Monomer	Melt/freeze T	Properties
#1 PET	C ₁₀ H ₈ O ₄	500 deg F	Strong but heat-sensitive
#2 HDPE	C ₂ H ₄	270 deg F	Strong, light and stable
#3 PVC	C ₂ H ₃ Cl	212+ deg F	Rigid, can be flexible with additives, very heat-sensitive
#4 LDPE	C ₂ H ₄	230 deg F	Thin/flexible version of HDPE
#5 PP	СзН6	320 deg F	Strong and stable
#6 PS	C ₈ H ₈	800 deg F	Heat resistant; concerns with additive leaching
#7 Misc.	Many!	Wide range	Wide range of properties

What are the methods for plastics recycling?

- Mechanical recycling (shred soda bottles for carpet filler – <u>no change to the monomers</u>)
- Thermal recycling (sort, clean, heat, soften/melt, compress/pelletize, mold/stretch and harden/freeze – minimal changes to the monomers)
- Molecular, chemical or solvent recycling (pyrolysis and other processes to <u>change the monomers</u> through unlimited cycles)

Plastics monomer recycling

- Infinite cycling
- Flexibility
- Capex and scale
- Energy and resources

Post-consumer plastics recycling: US markets

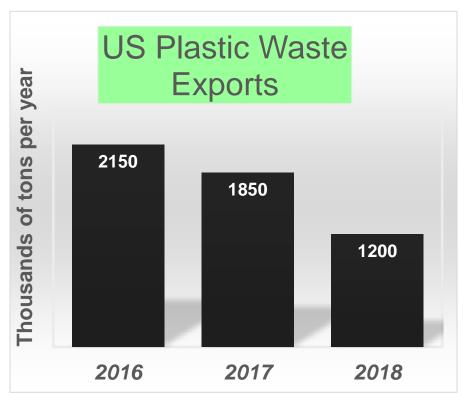
Local options

- Traders/processors supply chain
- End-users small-scale extrusion and molding products
- In New England, plastics waste supply exceeds demand

Regional facilities – large wasteshed areas

- Fayetteville, NC (Clear Path) –140,000 tpy PET
- Troy, AL (KW Plastics) 500,000 tpy HDPE/PP
- Winchester, VA (Trex) LDPE/HDPE film

Exports



Post-consumer plastic global markets, 2017-2021

2013	China's "Green Fence" limits all scrap
	contamination, including plastics
2018	China's "National Sword" bans mixed plastic
	waste imports, limits contamination to 0.5%
2018	Other Asian countries limit imports
	Chinese plastics companies enter US market
2019	MRFs stockpile plastics, reduce collection
	China and US announce tariff increases
2020	Pandemic reduces economic activity
2021	Big freeze in Texas disrupts resin production
Ongoing	Concerns with ocean waste, climate change


Plastics recycling: export markets, 2017-2018

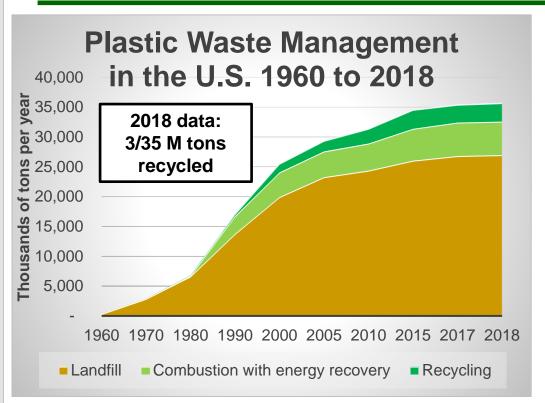
China bans mixed plastic imports on January 1, 2018 limits contamination to 0.5% as of March 1, 2018

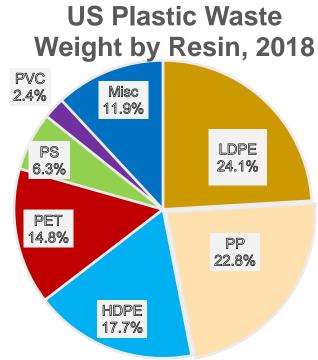
	2017	2018
China	611	60
Hong Kong	407	132
Vietnam	148	84
India	148	144
Malaysia	130	228
Mexico	56	48
Indonesia	37	36
Taiwan	37	60
Thailand	37	120
Other	93	132
	1850	1200

Plastics recycling around the world

New restrictions on waste exports in trade

- Control trading of overly-contaminated scrap
- Reduce impacts on oceans


Basel Convention, 2021


- Plastic waste exports require notice and consent
- 187 countries sign; the US has not yet signed
- US waste plastic exports are now limited to
 - Pre-sorted clean uncontaminated materials; or
 - Bilateral agreements with notice and consent (Canada, Mexico, OECD)

Circular Economy Resolutions for UN Conference on the Environment, Nairobi, Kenya 2022

Plastic waste: US tons and resins

In crisis there is opportunity!

- Crisis: imbalance of waste plastic supply/demand
- Public sector response: reduce plastics waste
- Industry response: add plastics recycling capacity
 - Increased interest in ESG investments
 - New corporate carbon footprint reduction goals
 - Domestic sources improve supply chains
 - Recycled resins depend less on oil markets

Evolving hierarchy for plastics recycling

- A. Reduce plastics waste
- B. Return plastic waste to commerce
- C. Avoid/reduce fossil fuel use/emissions
- D. Dispose of the irreducible minimum

Evaluation criteria

- Energy use and emissions from processing
- Energy use and emissions from transport
- Carbon footprint over the use/recovery life-cycle

Reduce plastics waste. Minimize energy use and emissions from transport

U.S. Plastics Pact Unveils National Strategy to Achieve 2025 Circular Economy Goals. June 15th, 2021

- 1. Eliminate problematic or unnecessary packaging.
- 2. Make all plastic packaging reusable, recyclable, or compostable.
- 3. Recycle or compost 50% of plastic packaging.
- 4. Achieve average for plastic packaging of 30% recycled or responsibly-sourced bio-based content

https://usplasticspact.org/

New large-scale plastics recycling facilities

PureCycle (Proctor & Gamble): replace PET/HDPE with PP

- 50,000 tpy new capacity, Ironton, OH by 2022
- 500,000 tpy new capacity by 2025

Envision Plastics:

- Diversion of ocean-bound plastics to produce resins
- Production of food-grade post-consumer HDPE at former MRF in Reidsville, NC

New large-scale plastics recycling facilities

Eastman Renew: carbon renewal technology

- Allows full recycling of C-H monomers, 1-2 and 4-7
- Can recycle infinite times with no loss of quality
- 100,000 tpy new capacity, Kingsport, TN, by 2022

Brightmark: pyrolysis/gasification of 1s through 7s

- 100,000 tpy new capacity, Ashley, IN, in start-up
- 400,000 tpy new capacity in Macon, GA by 2025

Pyrolysis process: decompose polymers to gases and monomers with

- Controlled heat and pressure
- No oxygen (prevent burning)
- Catalysts
- Distillation and post-processing

Products include

- Plastic monomers
- Liquid fuels (synthetic diesel, jet fuel, heating oil)
- Biochar and solid residues

Other pyrolysis/gasification processes

Alternative feedstocks

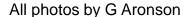
- Biosolids (carbohydates) with PFAS destruction
- Mixed plastics and products (hydrocarbons) preprocessed to a physical spec

Other products

- Electricity (steam turbines and IC engines)
- Renewable pipeline gas

Small-scale skid-mounted facilities

Reduce energy for transport


Waste plastics to diesel by pyrolysis, Jiangsu Province, Republic of China

1. Feedstock pre-processing

2. Conversion in a reactor vessel with mixing, heat and a catalyst

3. Product distillation and refinement

Small-scale pyrolysis/gasification facility development in the Northeast:

- 1. Sustane Technologies, Chester, NS in start-up
- 2. Warwick, RI pre-construction development
- 3. Aries CleanTech, Taunton MA in MEPA permitting process
- 4. Trashology: pilot test facility, Concord, MA
- 5. Nantucket RFEI process planning and procurement process

MassDEP guidance on pyrolysis/gasification

Letter to City of Taunton, July 2019

	Technology	Status of 1990 permit moratorium
	New MSW combustion capacity	Applies
	Use syngas from pyrolysis or gasification to make electricity	Limited to 350,000 tpy MSW statewide capacity
	Transportation liquid fuels (synthetic diesel, jet fuel)	Exempt
	Other fuels that might be combusted (synthetic home heating oil, pipeline natural gas)	Not addressed yet

MassDEP guidance on pyrolysis/gasification

Letter on Aries CleanTech project in Taunton, July 2019

Projects will require upfront recycling programs with measurable and enforceable performance standards

- Implies that source separation/recycling is preferred to pyrolysis
- Standards will depend on technology
- No precedents yet

Where should local pyrolysis/gasification be in the hierarchy?

- Monomer cycling vs. fuel/energy production
- Net carbon footprint of local vs. remote recycling?
- Fate of exported material not known with certainty

De-carbonization vs. de-fossilization

- Mass. de-carbonization roadmaps have a continuing role for synthesized liquid fuels
- Cost, quantities and sources are "major uncertainties requiring further in-depth study"
- Pyrolysis/gasification of plastics could fill role as an alternative to bad-politics biomass

Summary

- Consider monomers
- Export limits led to supply/demand imbalance
- New actions to address waste plastics
 - Public action to reduce waste plastic supply
 - Private action to add recycling capacity
- Emerging pyrolysis technology regionally and locally for monomer recycling, liquid fuels and electricity

Evolving hierarchy for plastics recycling

- A. Reduce plastics waste
- B. Return plastic waste to commerce and
- C. Avoid/reduce fossil fuel use and emissions
- D. Dispose of the irreducible minimum

Evaluation criteria

- Energy use and emissions from processing
- Energy use and emissions from transport
- Carbon footprint over the use/recovery life-cycle

Thank you for listening.

SUPPORT THE EBCNE !!!

George Aronson, Principal

CommonWealth

Resource Management Corporation

On the web at www.crmcx.com

Moderated Discussion

Gretchen Carey

Program Co-Chair & Panel Moderator

Recycling and Organics Coordinator, Republic Services

President, MassRecycle

